Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 16, 2026
-
Low-latency and low-power edge AI is crucial for Virtual Reality and Augmented Reality applications. Recent advances demonstrate that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve a superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can present system challenges for latency and energy efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and explore diverse execution schemas to efficiently execute these hybrid models. We introduce H4H-NAS, a two-stage Neural Architecture Search (NAS) framework to automate the design of efficient hybrid CNN/ViT models for heterogeneous edge systems featuring both NPU and CIM. We propose a two-phase incremental supernet training in our NAS framework to resolve gradient conflicts between sampled subnets caused by different types of blocks in a hybrid model search space. Our H4H-NAS approach is also powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN-ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet. Moreover, results from our algorithm/hardware co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing heterogeneous computing over baseline solutions. Overall, our framework guides the design of hybrid network architectures and system architectures for NPU+CIM heterogeneous systems.more » « lessFree, publicly-accessible full text available January 20, 2026
-
Federated Learning (FL) under distributed concept drift is a largely unexplored area. Although concept drift is itself a well-studied phenomenon, it poses particular challenges for FL, because drifts arise staggered in time and space (across clients). Our work is the first to explicitly study data heterogeneity in both dimensions. We first demonstrate that prior solutions to drift adaptation, with their single global model, are ill-suited to staggered drifts, necessitating multiple-model solutions. We identify the problem of drift adaptation as a time-varying clustering problem, and we propose two new clustering algorithms for reacting to drifts based on local drift detection and hierarchical clustering. Empirical evaluation shows that our solutions achieve significantly higher accuracy than existing baselines, and are comparable to an idealized algorithm with oracle knowledge of the ground-truth clustering of clients to concepts at each time step.more » « less
-
Memory latency and bandwidth are significant bottlenecks in designing in-memory indexes. Processing-in-memory (PIM), an emerging hardware design approach, alleviates this problem by embedding processors in memory modules, enabling low-latency memory access whose aggregated bandwidth scales linearly with the number of PIM modules. Despite recent work in balanced comparison-based indexes on PIM systems, building efficient tries for PIMs remains an open challenge due to tries' inherently unbalanced shape. This paper presents the PIM-trie, the first batch-parallel radix-based index for PIM systems that provides load balance and low communication under adversary-controlled workloads. We introduce trie matching-matching a query trie of a batch against the compressed data trie-as a key building block for PIM-friendly index operations. Our algorithm combines (i) hash-based comparisons for coarse-grained work distribution/elimination and (ii) bit-by-bit comparisons for fine-grained matching. Combined with other techniques (meta-block decomposition, selective recursive replication, differentiated verification), PIM-trie supports LongestCommonPrefix, Insert, and Delete in O(logP) communication rounds per batch and O(l/w) communication volume per string, where P is the number of PIM modules, l is the string length in bits, and w is the machine word size. Moreover, work and communication are load-balanced among modules whp, even under worst-case skew.more » « less
-
Batching has a fundamental influence on the efficiency of deep neural network (DNN) execution. However, for dynamic DNNs, efficient batching is particularly challenging as the dataflow graph varies per input instance. As a result, state-of-the-art frameworks use heuristics that result in suboptimal batching decisions. Further, batching puts strict restrictions on memory adjacency and can lead to high data movement costs. In this paper, we provide an approach for batching dynamic DNNs based on finite state machines, which enables the automatic discovery of batching policies specialized for each DNN via reinforcement learning. Moreover, we find that memory planning that is aware of the batching policy can save significant data movement overheads, which is automated by a PQ tree-based algorithm we introduce. Experimental results show that our framework speeds up state-of-the-art frameworks by on average 1.15x, 1.39x, and 2.45x for chain-based, tree-based, and lattice-based DNNs across CPU and GPU. The framework is open-sourced at https://github.com/gulang2019/ED-Batch.git.more » « less
-
Federated Learning (FL) under distributed concept drift is a largely unexplored area. Although concept drift is itself a well-studied phenomenon, it poses particular challenges for FL, because drifts arise staggered in time and space (across clients). Our work is the first to explicitly study data heterogeneity in both dimensions. We first demonstrate that prior solutions to drift adaptation, with their single global model, are ill-suited to staggered drifts, necessitating multiple-model solutions. We identify the problem of drift adaptation as a time-varying clustering problem, and we propose two new clustering algorithms for reacting to drifts based on local drift detection and hierarchical clustering. Empirical evaluation shows that our solutions achieve significantly higher accuracy than existing baselines, and are comparable to an idealized algorithm with oracle knowledge of the ground-truth clustering of clients to concepts at each time step.more » « less
-
The emergence of “robotics in the wild” has triggered a wave of recent research in hardware and software to boost robots’ compute capabilities. Nevertheless, research in this area is hindered by the lack of a comprehensive benchmark suite. In this paper, we present RTRBench, a benchmark suite for robotic kernels. RTRBench includes 16 kernels, spanning the entire software pipeline of a wide swath of robots, all implemented in C++ for fast execution. Together with the suite, we conduct an evaluation of the workloads at the architecture level. We pinpoint the sources of inefficiencies in a modern robotic processor when executing the robotic kernels, along with the opportunities for improvements. The source code of the benchmark suite is available in https://cmu-roboarch.github.io/rtrbench/.more » « less
An official website of the United States government

Full Text Available